geodesic biangle - Definition. Was ist geodesic biangle
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist geodesic biangle - definition

STRAIGHT PATH ON A CURVED SURFACE OR A RIEMANNIAN MANIFOLD
Geodesic flow; Geodesics; Geodesic equation; Geodesic spray; Geodesic Spray; Straightness; Affine parameter; Geodesic path; Geodesic triangle; Geodesic Triangle; Geodesic length
  • If an insect is placed on a surface and continually walks "forward", by definition it will trace out a geodesic.
  • Triangle}}A geodesic triangle on the sphere.
  • geodesic on a triaxial ellipsoid]].

Straightness         
·noun A variant of Straitness.
II. Straightness ·noun The quality, condition, or state, of being straight; as, the straightness of a path.
geodesic         
[?d?i:?(?)'d?s?k, -'di:s?k]
¦ adjective
1. relating to or denoting the shortest possible line between two points on a sphere or other curved surface.
2. (of a dome) constructed from struts which follow geodesic lines and form an open framework of triangles and polygons.
3. another term for geodetic.
Geodesic         
·noun A geodetic line or curve.
II. Geodesic ·adj ·Alt. of Geodesical.

Wikipedia

Geodesic

In geometry, a geodesic () is a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line".

The noun geodesic and the adjective geodetic come from geodesy, the science of measuring the size and shape of Earth, though many of the underlying principles can be applied to any ellipsoidal geometry. In the original sense, a geodesic was the shortest route between two points on the Earth's surface. For a spherical Earth, it is a segment of a great circle (see also great-circle distance). The term has since been generalized to more abstract mathematical spaces; for example, in graph theory, one might consider a geodesic between two vertices/nodes of a graph.

In a Riemannian manifold or submanifold, geodesics are characterised by the property of having vanishing geodesic curvature. More generally, in the presence of an affine connection, a geodesic is defined to be a curve whose tangent vectors remain parallel if they are transported along it. Applying this to the Levi-Civita connection of a Riemannian metric recovers the previous notion.

Geodesics are of particular importance in general relativity. Timelike geodesics in general relativity describe the motion of free falling test particles.